- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Stepputtis, Simon (3)
-
Campbell, Joseph (2)
-
Amor, Heni Ben (1)
-
Ben Amor, Heni (1)
-
BenĀ Amor, Heni (1)
-
Hitzmann, Arne (1)
-
Hosoda, Koh (1)
-
Ikemoto, Shuhei (1)
-
Phielipp, Mariano (1)
-
Sonawani, Shubham (1)
-
Zhou, Yifan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Training language-conditioned policies is typically time-consuming and resource-intensive. Additionally, the resulting controllers are tailored to the specific robot they were trained on, making it difficult to transfer them to other robots with different dynamics. To address these challenges, we propose a new approach called Hierarchical Modularity, which enables more efficient training and subsequent transfer of such policies across different types of robots. The approach incorporates Supervised Attention which bridges the gap between modular and end-to-end learning by enabling the re-use of functional building blocks. In this contribution, we build upon our previous work, showcasing the extended utilities and improved performance by expanding the hierarchy to include new tasks and introducing an automated pipeline for synthesizing a large quantity of novel objects. We demonstrate the effectiveness of this approach through extensive simulated and real-world robot manipulation experiments.more » « less
-
Campbell, Joseph; Stepputtis, Simon; Ben Amor, Heni (, Robotics: Science and Systems XV)Human-robot interaction benefits greatly from multimodal sensor inputs as they enable increased robustness and generalization accuracy. Despite this observation, few HRI methods are capable of efficiently performing inference for multimodal systems. In this work, we introduce a reformulation of Interaction Primitives which allows for learning from demonstration of interaction tasks, while also gracefully handling nonlinearities inherent to multimodal inference in such scenarios. We also empirically show that our method results in more accurate, more robust, and faster inference than standard Interaction Primitives and other common methods in challenging HRI scenarios.more » « less
-
Campbell, Joseph; Hitzmann, Arne; Stepputtis, Simon; Ikemoto, Shuhei; Hosoda, Koh; Amor, Heni Ben (, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS))null (Ed.)
An official website of the United States government

Full Text Available